
J. Ray et al Statisti
sin Medi
ineDE-AC04-94-AL85000

Statist. Med. 0000, 00 2{30 Copyright 

 0000 John Wiley & Sons, Ltd. www.sim.org 1Prepared using simauth.
ls



Resear
h Arti
le Statisti
sin Medi
ineRe
eived XXXX(www.inters
ien
e.wiley.
om) DOI: 10.1002/sim.0000A Bayesian approa
h for estimatingbioterror atta
ks from patient dataJ. Ray1�, Y. M. Marzouk2, and H. N. Najm1Terrorist atta
ks using an aerosolized pathogen have gained 
redibility as a national se
urity 
on
ern after the anthraxatta
ks of 2001. Inferring some important details of the atta
k qui
kly, for example, the number of people infe
ted, the timeof infe
tion, and a representative dose re
eived 
an be 
ru
ial to planning a medi
al response. We use a Bayesian approa
h,based on a short time series of diagnosed patients, to estimate a joint probability density for these parameters. We �rsttest the formulation with idealized 
ases and then apply it to realisti
 s
enarios, in
luding the Sverdlovsk anthrax outbreakof 1979. We also use simulated outbreaks to explore the impa
t of model error, as when the model used for generatingsimulated epidemi
 
urves does not mat
h the model subsequently used to 
hara
terize the atta
k. We �nd that in all
ases ex
ept for the smallest atta
ks (fewer than 100 infe
ted people), 3{5 days of data are suÆ
ient to 
hara
terize theoutbreak to a spe
i�
ity that is useful for dire
ting an emergen
y response. Copyright 

 0000 John Wiley & Sons, Ltd.Keywords: Bayesian inferen
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1. Introdu
tionThe anthrax atta
ks of 2001 [1℄ raised the 
redibility of aerosolized pathogens being used in a bioterror atta
k. Early warning, inthe form of an anomalous in
rease in syndromes dete
ted by publi
 health monitoring networks [2℄ or alternatively via dete
tionof the aerosol by environmental sensors, holds the highest potential for redu
ing 
asualties. However, syndromi
 surveillan
e 
anonly provide heightened awareness; it results neither in de�nitive eviden
e of an atta
k nor in identi�
ation of the pathogen.Further, environmental sensors may not always 
apture the introdu
tion of an aerosolized pathogen into a population; examplesin
lude small releases that do not travel far, 
oarse parti
ulate formulations that pre
ipitate easily, and releases in areas whi
hare not well instrumented. In these 
ases, the �rst intimation of an atta
k (i.e., identi�
ation of the pathogen, 
on�rmationthat the outbreak was not being 
aused by natural 
auses, et
.) will follow the diagnosis of the �rst few patients, but by thenthe disease may have established itself in the population. Inferring more information about the release (hen
eforth referred toas the bioterror, or BT, atta
k) by 
omputing the number N of people infe
ted, the time � of infe
tion, and a representativedose D re
eived by the infe
ted individuals has important rami�
ations in planning a response, as unders
ored by the \Dark1 Sandia National Laboratories, PO Box 969, Livermore, CA, 94550-0969 2 Massa
husetts Institute of Te
hnology, 77 Massa
husetts Avenue, Cambridge, MA02139-4307�Corresponden
e to: MS 9159, PO Box 969, Sandia National Laboratories, Livermore, CA, 94550-0969. Email: jairay�somnet.sandia.govContra
t/grant sponsor: US Dept of EnergyStatist. Med. 0000, 00 2{30 Copyright 
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ineWinter" exer
ise [3℄. The inferred 
hara
teristi
s 
an serve as initial 
onditions for ensembles of predi
tive epidemi
 simulationsthat guide the optimal allo
ation of medi
al resour
es under un
ertainty.Inferring the 
hara
teristi
s of an outbreak 
an be 
hallenging. Data for inferen
e 
onsist of the time ea
h diagnosed patientbe
ame symptomati
, known to within a �nite time interval, and perhaps the lo
ation of ea
h patient's residen
e and pla
e ofwork. The time at whi
h ea
h patient's symptoms �rst appear is related to the genesis of the outbreak via the in
ubation period,typi
ally modeled as a random variable whose probability distribution may be dependent on the dose re
eived. For relevan
eto response planning and 
onsequen
e management, inferen
es should be drawn early in the outbreak|from a 3{5 day timeseries of patient data, for instan
e. We also note that the in
ubation period distribution used for inferen
e may be a poor modelfor the parti
ular instan
e of the disease. This mismat
h, and the pau
ity of data in a short observational period, suggest thatthe inferred 
hara
teristi
s will be rather approximate and that quantifying un
ertainty in the 
hara
terization will be a keyrequirement of the inferen
e pro
ess.Few studies have used statisti
al methods to 
hara
terize the genesis of a partially observed epidemi
 arising from the releaseof an aerosol. Here, we use the term \
hara
terize" to denote estimating the number of index 
ases, the time of infe
tion and arepresentative dose (of the pathogen) re
eived by the infe
ted people. Thus, it should not be interpreted as a full 
hara
terizationof a bioatta
k whi
h would in
lude, among other things, the extent of 
ontamination, the nature of the aerosol et
. Our useof this term is 
onsistent with studies similar to ours e.g., [4, 5℄. Walden & Kaplan [6℄ introdu
ed a Bayesian formulation forestimating the size and time of a bioterror atta
k and tested it on a low-dose (less than ID25, the dose at whi
h a person has a25% probability of in
urring the disease) anthrax release 
orresponding, approximately, to the Sverdlovsk anthrax outbreak [7℄ of1979. Their formulation in
orporated an in
ubation period model developed by Brookmeyer et al. [8℄ and demonstrated the use ofprior distributions on N to redu
e un
ertainty in the inferred 
hara
teristi
s. Brookmeyer & Blades [9℄ used a maximum likelihoodapproa
h, along with the anthrax in
ubation model in [8℄, to infer the size of the 2001 anthrax atta
ks [1℄ before estimatingthe redu
tion in 
asualties due to the timely administration of antibioti
s. Both [6℄ and [9℄ developed similar expressions for thelikelihood fun
tion, i.e., the probability of observing a patient time series given an atta
k at time � with N infe
ted people. Thein
ubation period model in [8℄ was not dose-dependent, and hen
e no doses were inferred in these two studies.Signi�
antly more e�ort has been spent in 
hara
terizing the in
ubation period of inhalational anthrax. Most work has beenexperimental, with non-human primates subje
ted to anthrax 
hallenges [10, 11, 12, 13, 14, 15℄. Brookmeyer et al. [8℄, on theother hand, used data from the Sverdlovsk outbreak to �t a log-normal distribution of in
ubation periods valid at low doses; theirmore re
ent work, based on a 
ompeting risks formulation, in
ludes dose-dependen
e [16℄. Wilkening [17℄ 
ompares four dose-dependent models for the in
ubation period distribution, one of whi
h (termed Model D) is stru
turally identi
al to Brookmeyer's[16℄, with updated parameters. Compared to Model D, Wilkening's Model A2 provides slightly better agreement with the spatialand temporal distribution of anthrax 
ases observed in Sverdlovsk. Yet experimental results by Ivins et al. [14℄ and Bra
hmanet al. [15℄ show signi�
ant departures from the results of both models, espe
ially in the 103{104 spore dose range (see Fig. 1).Thus both A2 and D must be 
onsidered approximate, though useful, predi
tive tools. In this study, we will explore the impa
tof model error by using Model D to simulate epidemi
 
urves arising from BT atta
ks while using Model A2 for inferen
e. Amore detailed dis
ussion of the anthrax in
ubation period models is provided in Se
tion 2.2.The issue of dose-response fun
tions|whether a person exposed to a number of spores will a
tually 
ontra
t the disease|will not be addressed in this study. We 
on
entrate on inferring the number of people who are a
tually infe
ted, not merelyexposed to the pathogen. The problem of estimating the probability of infe
tion from D spores was addressed by Brookmeyeret al. [16℄ as well as by Glassman [18℄ and Druett et al. [19℄. Haas [20℄ has established that exposure to low doses 
an still posea statisti
ally signi�
ant risk to large populations.The BARD [4℄ e�ort also seeks to identify (provide early warning of) a BT atta
k from the presentation of symptoms.The observables 
onsist of respiratory visits to emergen
y departments, as might be obtainable from syndromi
 surveillan
esystems su
h as RODS [21℄. The model that relates these observables to the testing of 
ompeting hypotheses (normal morbidityversus a BT atta
k-generated spatiotemporal morbidity pattern) of the outbreak in
ludes a Gaussian dispersion plume [22℄ andWilkening's A2 model [17℄. However, BARD's use in an urban 
ontext is only approximate sin
e Gaussian plumes are suitedmainly for open spa
es [22℄. In the tests do
umented in [4℄, BARD 
ould dete
t anthrax atta
ks with 900 (or more) index 
asesStatist. Med. 0000, 00 2{30 Copyright 
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Statisti
sin Medi
ine J. Ray et alwith 100% sensitivity at a low false-alarm rate (FAR). Smaller atta
ks 
ould also be dete
ted but at a higher FAR. Note thatBARD uses syndromi
 surveillan
e data; i.e., 
ases must exhibit symptoms but do not have to be diagnosed with anthrax for theapproa
h to work. Further, dete
tion generally takes 3{5 days, post{release, during whi
h only a small fra
tion of the index 
asesdevelop symptoms. Even in fast-a
ting, high-dose releases, BARD 
ould dete
t outbreaks with less than 15% of the infe
tedpeople showing symptoms. The paper by Legrand et al. [5℄ investigates simulated anthrax outbreaks with a view of inferring thelo
ation and time of release and the quantity released. It was demonstrated that about 15 diagnosed patients were suÆ
ient toinfer the 
hara
teristi
s of the release with enough a

ura
y to make an appre
iable impa
t on a targeted prophylaxis 
ampaign.They also investigated the e�e
t of model un
ertainty, i.e., when the model used for inferen
e is at varian
e with the model usedfor generating the syntheti
 data. The e�e
t of a Gaussian plume model (versus a more sophisti
ated Gaussian pu� model) onthe a

ura
y of inferen
es was also investigated.In this study, we develop a Bayesian formulation for inferring BT atta
k 
hara
teristi
s in the form of probability distributionsfor N, � , and D, using data from the �rst 3{5 days of an outbreak, 
ounted from the day of �rst diagnosis. Note that weinfer a single representative dose (of anthrax) for the entire infe
ted population, rather than a distribution (e.g., a mean and aninterquartile range). This is driven by the tests performed in [5℄ where an inferen
e approa
h based on a spatially variable doseperformed no better than an older, single-representative-dose version of the inferen
e te
hnique presented in this paper. Theobservables 
onsist of the number of patients who show symptoms and are diagnosed by a 
ertain point in time. The approa
h isintended to be used within the 
ontext of medi
al resour
e planning in the aftermath of a BT atta
k (see [23, 24℄ for examples).We therefore rely on simple temporal input data, redu
ing the 
omplexity of data 
olle
tion and the potential for signi�
antobservational errors [5℄. All tests are performed with anthrax as the pathogen. Compared to [6℄ and [4℄, we introdu
e a newdegree of detail to outbreak data and its analysis. Unlike [6℄, we 
onsider dose-dependent in
ubation periods and populationsinfe
ted by a broad range of doses, 
ommensurate with atmospheri
 dispersion, and infer a representative dose for the population.Sin
e aerosol releases in 
on�ned spa
es 
an lead to high doses (
omparable to or greater than ID50), the inferred dose serves asa useful indi
ator of the indoor versus outdoor nature of the release. Model un
ertainty is examined here in order to assess howlarge an error one might en
ounter under realisti
 
onditions. We also explore how the a

ura
y and un
ertainty of estimatesare a�e
ted by the size of the outbreak, the dose re
eived, and the frequen
y with whi
h patient data is 
olle
ted. Further, weidentify 
orrelations between the inferred parameters of the atta
k, demonstrating realisti
 
ases in whi
h s
ar
e data mightsupport multiple 
hara
terizations. These 
hara
terizations were not explored in [6, 4℄. We then use our method to analyze theSverdlovsk outbreak of 1979 [7℄.2. The Inverse Problem2.1. FormulationWe now formulate a Bayesian parameter estimation problem for some of the 
hara
teristi
s of a BT atta
k. A detailed derivation
an be found in [25℄; we reprodu
e a summary here.Consider a time series of infe
ted patients fti ; nig, i = 0 : : :M, where ni is the number of people developing symptoms inthe time interval (ti�1; ti ℄. For simpli
ity, we let the intervals be of uniform length �t = ti � ti�1. We will 
onsider two values of�t, 6 hours and 24 hours, to explore the impa
t of time resolution in the observations. At time t0 the �rst patient(s) be
omesymptomati
; given the �nite resolution of our time series, we allow that this patient may have developed symptoms anytimebetween t0 and t�1 = t0 � �t. M is the total length of the time series and is expe
ted to be small, e.g., 3{5 days. We seek aprobabilisti
 model for these observables, 
onditioned on an atta
k that infe
ts N people at time � with a uniform dose of Dspores. By 
onvention, we set t0 to zero, and thus � , the time of infe
tion, is always negative.The dose-dependent in
ubation period is des
ribed by its 
umulative distribution fun
tion (CDF) C(T;D), where T , thein
ubation period, is the time elapsed sin
e infe
tion. The probability of an infe
ted individual developing symptoms in theinterval (ti�1; ti ℄ is thus fC(ti � �;D)� C(ti�1 � �;D)g. Let L =PMi=0 ni be the total number of people who have developed4 www.sim.org Copyright 
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J. Ray et al Statisti
sin Medi
inesymptoms by the end of the observation period tM . Then N � L infe
ted people are still asymptomati
; the probability ofsomeone remaining asymptomati
 at tM is the survival probability, Psurv(tM � �;D) = 1� C(tM � �;D). Sin
e the in
ubationtimes of ea
h individual are 
onditionally independent given N, � , D and the disease model, the probability of the entire timeseries fti ; nig obeys a multinomial distribution with M + 2 out
omes. One out
ome 
orresponds to remaining asymptomati
at tM ; the M + 1 others 
orrespond to developing symptoms in a pre
eding time interval. The resulting 
onditional probabilitydistribution is given by the following expression:P “fti ; nigMi=0jN; �;D”= N!(N � L)!QMi=0 ni ! � fPsurv(tM � �;D)gN�L� M
Yi=0 (C(ti � �;D)� C(ti�1 � �;D))ni� L (N; �;D) : (1)In the last line of this equation, we rewrite the probability of the observables as a likelihood fun
tion L(N; �;D). We then useBayes rule to obtain the posterior probability of the atta
k parameters:p “N; �; log10(D)jfti ; nigMi=0” / L(N; �;D)�N(N)�� (�)�D(log10(D)): (2)Note that we have written the posterior density in terms of log10(D) rather than D; this is in keeping with [18, 17, 26℄, whereresponse to infe
tion is generally modeled as a fun
tion of the log-dose. Here �N , �� , and �D are prior densities on N, � , andlog10(D). Presuming a la
k of additional information (and without any reason to believe the 
ontrary), we use broad uniform priorson all three parameters. The joint posterior density 
an then be marginalized to obtain individual probability density fun
tions(PDFs) for N, � and log10(D). Integrals yielding these marginal densities are evaluated using the VEGAS algorithm [27℄, aniterative adaptive Monte Carlo method implemented in the GNU S
ienti�
 Library [28℄.2.2. Anthrax in
ubation modelsThis se
tion brie
y reviews two mathemati
al models of the in
ubation period of inhalational anthrax. One of these models isused in the inferen
e pro
edure. The se
ond is used to simulate anthrax atta
ks in Se
. 3.2 where we investigate the e�e
tof model un
ertainty, i.e., the un
ertainty in the inferen
e when the model used for inferen
e is an inexa
t representation ofthe pro
esses that generate the data. We also present a 
omparison of the models versus experimental results (mostly fromnon-human primates) to provide an estimate of the a

ura
y (and appli
ability to humans) of both the models. These modelsare from Wilkening [17℄; details of their derivation 
an be found in [17, 29℄. In both the models, the time of onset of symptomsin a person exposed instantaneously to D anthrax spores is 
onsidered to be a random variable, des
ribed by its 
umulativedistribution fun
tion (CDF).The CDF for Wilkening's Model D is given by [17, 29℄CModelD(T;D) = Z T0 F (T � s;D;�; �)g(s)ds; (3)whi
h is a 
onvolution of F (T ;D)|the probability that at least one spore out of a dose of D spores will germinate into avegetative anthrax 
ell by time t|and g(s), whi
h is the PDF of the time s taken, post-germination, to rea
h a ba
terial loadat whi
h symptoms appear. F and g are de�ned asF (T ;D;�; �) = 1p „1� exp„� D��+ �Q(T )«« ; whereQ(T ) = 1� exp (�(�+ �)T ) ; (4)Statist. Med. 0000, 00 2{30 Copyright 
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Statisti
sin Medi
ine J. Ray et alp = 1� exp„� D�� + �« (5)and g(s) = 1p2��ss exp„�12 log2(s=Ms)�2s « : (6)The probability of showing symptoms in in�nite time, denoted p, is also 
alled the atta
k rate. These distributions depend on anumber of parameters:� Nthresh, a threshold ba
terial load in a person that 
auses symptoms;� t2, the ba
terial load doubling time in a given medium (e.g., mediastinal lymph nodes where the spores germinate), whi
h
an be obtained from in vitro laboratory experiments;� tM , whi
h is the time required to rea
h a ba
terial load of NthreshtM = tlag + t2log(2) NthreshD ;� tlag, a lag time in ba
terial growth experiments (typi
ally 1 hour);� �2s , the varian
e of the log of the time required to rea
h the symptomati
 ba
terial load;� �, the probability rate of 
learan
e of a spore (by the immune system), spe
i�ed in terms of probability of 
learan
e perspore per day;� �, the probability rate of germination of a spore, spe
i�ed in terms of probability of germination per spore per day.In the present models, Ms , the median time to symptoms, is set to tM . The values of the parameters for Model D are� = 0:109 day�1, � = 8:79� 10�6 day�1, tlag = 1 hour, t2 = 2:07 hour, Nthresh = 109 and �s = 0:544 day�1.Sartwell [30℄ found that the in
ubation period for a number of diseases was log-normally distributed, whi
h is at odds withEq. 3. Wilkening's Model A2 
aptures this alternative by assuming a log-normal distribution,CModelA2(T;D) = 12 »1 + erf „ ln(T=T0)p2S «– ; S = 0:804� 0:079 log10(D); (7)where T0, the median in
ubation time, is obtained by solving an integral equation derived from Eq. 30:5 = Z T00 F (T0 � s;D;�; �)g(s)ds:However, in solving for T0, Wilkening used a slightly di�erent set of parameters: � = 0:11 day�1, � = 8:84� 10�6 day�1,tlag = 1 hour, t2 = 2:06 hour, and �s = 0:542 day�1. The reason for the slight 
hange in parameters as well as the di�eren
ebetween Models A2 and D is dis
ussed below.Parameters in Eqs. 3 and 7 were obtained by �tting the models to the median in
ubation periods observed in experiments withnon-human primates (performed by Henderson et al. [10℄ and Friedlander et al. [13℄) and to the data from the Sverdlovsk anthraxoutbreak. The average dose in the Sverdlovsk outbreak, however, had to be inferred from atmospheri
 dispersion models and theprobability of exhibiting symptoms (in in�nite time) given a dose of D spores. This is the pro
edure adopted by Wilkening [17℄.Using Glassman's model [18℄ for the probability of infe
tion, one obtains an average dose of 2.4 spores. Alternatively, if oneemploys Eq. 5 (whi
h is similar in form to Druett's [19℄ and was used by Brookmeyer in [16℄) one obtains a dose of 300 spores.Wilkening retained both possibilities and in
orporated them into separate models. Model D is based on a dose of 300 spores atSverdlovsk while A2 assumes 2.4 spores.In Fig. 1, we plot the median in
ubation period predi
ted by Models A2 and D as a fun
tion of dosage D. The dosage atSverdlovsk, estimated as 2.4 spores (represented by �) is used to 
al
ulate parameters for Model A2 (solid line); the alternativeestimate of 300 spores (represented by a �lled r) is used for Model D (dashed line). Studies by Henderson [10℄ with 2:1� 105,3:9� 105 and 7:6� 105 spores (represented as �lled �) and Friedlander with 3:5� 105 spores (represented by �lled 4) were6 www.sim.org Copyright 

 0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 2{30Prepared using simauth.
ls



J. Ray et al Statisti
sin Medi
ine

dose [spores]

M
ed

ia
n

in
cu

ba
tio

n
pe

rio
d

100 101 102 103 104 105 106 107

2

4

6

8

10

12
14
16

Model A2
Model D
Henderson et al; J. Hyg. 54, 1956
Friedlander et al; J. Infec. Dis.; 167, 1993
Gleiser et al; Br. J. Exper. Pathol.; 44, 1963
Ivins et al; Vaccine ; 16(11/12), 1998
Sverdlovsk; Wilkening Model A
Sverdlovsk; Wilkening Model D
Brachman et al; Bact. Rev.; 30(3), 1966; 2/28 died
Brachman et al; Bact. Rev.; 30(3), 1966; 7/31 died
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Figure 1. The median in
ubation period (in days) for anthrax as a fun
tion of dose D. The solid line is Model A2, whi
h assumes a dose of 2.4 spores atSverdlovsk; the dashed line is Model D, whi
h assumes 300 spores. The solid symbols are median in
ubation periods obtained from experimental investigationsor from Sverdlovsk data. The �lled 
ir
le (Sverdlovsk; Wilkening Model A) refers to both Models A1 and A2, though only Model A2 is used in the 
urrent study.Symbols whi
h are not �lled denote experiments where the population of primates was too small to draw statisti
ally meaningful results. The experiments byBra
hman et al. [15℄ are shown by verti
al lines between symbols. In these experiments, only the lower and upper bounds of the in
ubation period were provided.These ranges were not used for determining model parameters and are only provided for referen
e.also used to 
al
ulate the parameters of both models. Studies by Ivins et al. [14℄ (un�lled 4) and Gleiser et al. [12℄ (un�lled 2)were 
ondu
ted with very few primates and 
onsequently are plotted only for referen
e. Primate experiments by Bra
hman [15℄simulated the e�e
t of prolonged regular exposure to low doses, as might be the 
ase in a 
ontaminated wool-sorting mill. Theprimates experien
ed extended periods during whi
h they re
eived no spores at all. The dose was de�ned as the total numberof spores inhaled and was generally low, between 1000 and 10,000 spores. We plot the resulting ranges of in
ubation periodsobserved at various dosages, also for referen
e.We see that the tests by Gleiser et al. and Ivins et al. agree with both models, whi
h in turn agree with ea
h other. However,signi�
ant di�eren
es arise when D <� 103 spores. (Note that the verti
al axis is logarithmi
.) Bra
hman's tests show medianin
ubation periods whi
h are at odds with the models' predi
tions; however the mode of infe
tion (a 
ontinuous low-level infe
tionpro
ess spread over days or months) was very di�erent from the rapid (times
ale of an hour) 
hallenge one would expe
t in a BTatta
k. Both models show a \kink" at D � 103; this is be
ause they are evaluated with a lower value of � (1:3� 10�6 day�1),
orresponding to a primate ID50 of 55,000 spores, for 
omparison with primate results at the high dose limit, while the low dosepredi
tions were developed with a human ID50 of 8600 spores for 
omparison with Sverdlovsk data. To the best of the authors'Statist. Med. 0000, 00 2{30 Copyright 

 0000 John Wiley & Sons, Ltd. www.sim.org 7Prepared using simauth.
ls



Statisti
sin Medi
ine J. Ray et alTable 1. Time series obtained from six di�erent outbreaks, simulated with the parameters fN; �;Dg as noted at the bottomof the table. The table has been divided into 24-hour se
tions, where the ni in ea
h se
tion are summed to produ
e the low-resolution time series (24-hour resolution) used to investigate the e�e
t of temporal resolution. Time is measured in days anddose in spores.Time is measured from the exhibition of �rst symptoms.time Simulation A Simulation B Simulation C Simulation D Simulation E Simulation F0.00 1 1 1 1 2 10.25 0 2 2 7 13 70.50 0 1 1 12 18 240.75 1 1 1 39 39 291.00 2 2 2 50 38 601.25 0 3 3 77 64 961.50 1 2 3 77 84 1531.75 2 1 1 98 116 1642.00 1 1 2 126 130 1932.25 1 1 2 162 137 2232.50 2 3 3 146 141 2582.75 3 1 4 148 160 3023.00 2 1 3 149 190 2993.25 1 3 3 163 175 3123.50 1 1 2 181 182 3043.75 1 1 3 162 201 3354.00 2 1 2 165 200 3734.25 1 5 5 177 238 3404.50 1 4 4 169 202 3274.75 3 2 2 217 216 3325.00 1 1 1 167 217 3505.25 1 3 4 182 237 3215.50 1 1 5 163 207 316N 100 100 100 10,000 10,000 10,000� -0.75 -2.25 -2.25 -0.5 -1.0 -1.25D 1 100 10,000 1 100 10,000knowledge, this is the sum total of experimental data obtained from anthrax 
hallenges of non-human primates where in
ubationtimes were measured. We have omitted a study by Klein et al. [31℄ in whi
h an in
ubation period in
rease was observed within
reasing doses, be
ause only one primate was subje
ted to ea
h dose, making the behavior statisti
ally unreliable.2.3. Inferen
e of atta
k parameters with ideal 
asesIn this se
tion we test the Bayesian estimation pro
edure des
ribed above. We use Wilkening's Model A2, des
ribed in Se
. 2.2,to simulate symptomati
 times for inhalational anthrax outbreaks of di�erent sizes. The same model is used for inferen
e;that is, there are no systemati
 errors between the inferen
e and data-generation models. Thus, posterior un
ertainties maybe as
ribed to (1) in
omplete observation of the outbreak, spe
i�
ally �nite time resolution �t and a short time series, and(2) the probabilisti
 
hara
ter of disease in
ubation. We investigate how the quality of the inferen
e varies with the size of theoutbreak and the dose re
eived. We also investigate whether a higher-resolution time series spanning a given observation periodperforms signi�
antly better than a lower-resolution one. Hen
eforth, per the derivation in Se
. 2.1, time will be measured fromthe exhibition of �rst symptoms.In Table 1, we list time series at 6-hour resolution: the number of patients showing symptoms 
olle
ted over 6-hour intervalsobtained from 6 simulated outbreaks, hen
eforth 
alled Simulations A{F. Ea
h infe
ted patient re
eived an identi
al dose D. Nindi
ates the number of people infe
ted and � is the time of atta
k, measured in days prior to the exhibition of symptoms in the�rst diagnosed patient.8 www.sim.org Copyright 
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J. Ray et al Statisti
sin Medi
ineWe use the pro
edure outlined in Se
. 2.1 to develop posterior PDFs for N, � , and log10(D) in Simulations A{F. Figs. 2, 3,and 4 plot the resulting marginal densities for fN; �; log10(D)g. These are 
onditioned on the 6-hour resolution time series listedin Table 1. In Table 2, we summarize the maximum a posteriori (MAP) estimates and 90% posterior 
redibility intervals (CIs) forN, � , and log10(D) obtained with 5 days of data. We see that the marginal MAP estimate of N (the value of N 
orrespondingto the peak of p `Njfti ; nigMi=0´) is generally 
lose to the 
orre
t value after 5 days of data (see Table 2). Even with 3 daysof data, the PDFs in Figs. 2, 3, and 4 are quite informative. In
reasing the length of the observation period to 5 days usuallysharpens the PDF, re
e
ting a redu
tion in un
ertainty. This trend holds true for small atta
ks (N = 102) as well as for largeones (N = 104). An ex
eption is Simulation F, whi
h will be dis
ussed below. The marginal MAP estimate of the time of atta
k� is also 
lose to the 
orre
t value, ex
ept for the small-N low-dose Simulation A. Larger atta
ks (Simulations D, E, and F)have narrower PDFs for � 
ompared to Simulations A, B, and C. Higher values of ni in Eq. 1 (whi
h generally result from largeN atta
ks) provide stru
ture in L and allow a more a

urate estimation of the atta
k.The dose D is the most diÆ
ult parameter to infer. PDFs for Simulations A, B and C in Figs. 2 and 3 show that it isvirtually impossible to estimate the dose for small (N = 102) atta
ks; appre
iable posterior probability is spread over 5 ordersof magnitude. Table 2 
on�rms that MAP estimates of the dose in these small atta
ks are in
orre
t. Larger atta
ks (N = 104)yield more informative PDFs for D. Note that the sensitivity of C(T;D) to D is rather small for Model A2 (see the expressionfor S in Eq. 7), suggesting that dependen
e of the likelihood fun
tion on D will be weak unless ni or M is large.Simulations D, E, and F (Figs. 3 and 4) demonstrate how early observations of an outbreak may support multiple hypotheses,and at times favor a \wrong" hypothesis over the 
orre
t one. For instan
e, Simulation D exhibits peaks in p(N) at N � 4� 103and N � 104. Peaks in the PDF of log10(D) o

ur at 1 spore and between 104 and 105 spores. For this simulation, both marginalPDFs overwhelmingly favor a large N, low-dose atta
k, whi
h is the 
orre
t 
hara
terization. A similar ambiguity is observedin Simulation E. Marginal PDFs in Simulation F (Fig. 4) are mu
h more strongly bimodal, however. In Fig. 5 we plot the jointposterior density p(N; log10(D)) to examine 
orrelations among these parameters; it 
learly shows two distin
t islands|one
orresponding to a large-N low-dose atta
k, and the other 
orresponding to a small-N high-dose atta
k. Up to Day 5, the datafavor the wrong hypothesis (a larger, low-dose atta
k) over the 
orre
t one. Note also that the large low-dose atta
k 
orrespondsto larger (i.e., later) values of � , as eviden
ed by the posterior density p(�) for Days 3{5 (Fig. 4, right 
olumn). With moredata (Day 6 and 7), the 
orre
t values for fN; �; log10(D)gare re
overed, with peaks at N � 104, � � �1:2, and log10(D) � 4.However, su
h a long observation period would not be relevant for 
onsequen
e planning purposes. We stress that a Bayesiananalysis is free to identify 
ompeting hypotheses, and that the degree of belief assigned to ea
h is determined by the data and theprior information. In a partially observed atta
k, the MAP estimate may be erroneous, espe
ially if data are s
ar
e. One possibleremedy is the use of informative priors for N, � , and/or log10(D) instead of the broad uniform priors used here. Otherwise,natural ambiguities may remain and should be a

ounted for in 
onsequen
e management plans based on these inferen
es.Coarser time resolution (�t = 24 hours instead of 6 hours) was investigated in [29℄ and generally yielded only a mild degradationin the smoothness of the PDFs. In simulations where a multimodal PDF evolves into a unimodal PDF over time (e.g., SimulationsD, E, and F), evolution is more rapid when the observations are 
olle
ted in 6-hour intervals.To summarize, solution of the inferen
e problem su

essfully provides N and � for small and large atta
ks. After 5 days ofobservations, the error in the MAP estimate for N (versus the true value) is less than 50% for small atta
ks (100 infe
tedpeople) and less than 5% for large atta
ks (10,000 infe
ted people). The same holds true for � , ex
ept the errors are smallerthan for N. D 
an be estimated only for large atta
ks (errors less than about 25%). This may be due to the low sensitivity ofthe early symptomati
 patient stream to dose, an observation that was also made by Legrand et al. [5℄ where they 
hara
terizedan anthrax BT atta
k with a low-dose in
ubation period model, without too mu
h error. Posterior PDFs are sharper for largeatta
ks and for high-dose atta
ks. Higher temporal resolution may smooth the PDFs slightly. When 
onditioning on a short timeseries, the Bayesian method may suggest multiple hypotheses, supported to di�ering degrees by the data. In some simulations,e.g., Simulation F, the data might initially support the wrong hypothesis, but the 
orre
t 
hara
terization is re
overed as moredata be
ome available.
Statist. Med. 0000, 00 2{30 Copyright 
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Day 05Figure 2. Posterior PDFs for N (top), � (middle), and logD (bottom) based on the time series for Simulation A (left) and Simulation B (right), as tabulated inTable 1. Data are 
olle
ted at 6-hour intervals in both simulations. The 
orre
t values for fN; �; log10(D)gin Simulation A are f102;�0:75; 100g; in SimulationB they are f102;�2:25; 102g. In both simulations, PDFs are reported after 3-, 4- and 5-day observational periods (dotted, dashed, and solid lines respe
tively).10 www.sim.org Copyright 
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Figure 3. Posterior PDFs for N (top), � (middle), and logD (bottom) based on the time series for Simulation C (left) and Simulation D (right), as tabulated inTable 1. Data are 
olle
ted at 6-hour intervals in both simulations. The 
orre
t values for fN; �; log10(D)gin Simulation C are f102;�2:25; 104g; in SimulationD they are f104;�0:05; 100g. In both simulations, PDFs are reported after 3-, 4- and 5-day observational periods (dotted, dashed, and solid lines respe
tively).Statist. Med. 0000, 00 2{30 Copyright 
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Figure 4. Posterior PDFs for N (top), � (middle), and logD (bottom) based on the time series for Simulation E (left) and Simulation F (right), as tabulated inTable 1. Data are 
olle
ted at 6-hour intervals in both simulations. The 
orre
t values for fN; �; log10(D)gin Simulation E are f104;�1:0; 102g; in SimulationF they are f104;�1:25; 104g. In both simulations, PDFs are reported after 3-, 4- and 5-day observational periods (dotted, dashed, and solid lines respe
tively),but Simulation F also in
ludes PDFs at Day 6 (solid lines with un�lled squares) and at Day 7 (solid lines with un�lled 
ir
les).12 www.sim.org Copyright 
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J. Ray et al Statisti
sin Medi
ineTable 2. Simulations A{F; MAP estimates and 90% 
redibility intervals (in parentheses) for N, � , and log10(D), 
onditioned onthe high-resolution time series at Day 5. The number in the 
urly bra
kets fg is the 
orre
t value.Simulation N � log10(D)A 70, (39.45 { 123.3) -1.75, (-2.90 { -1.04 ) 0.0, (0.18 { 4.12)f100g f�0:75g f0gB 110, (65.7 { 148.4) -2.0, (-3.1 { -1.33) 0.00, (0.14 { 3.97)f100g f�2:25g f2gC 150, (88.78 { 194.7) -1.75, (-2.85 { -1.22) 0.0, (0.153 { 4.13)f100g f�2:25g f4gD 9800, (9439 { 10,350) -0.50, (-0.85 { -0.44) 0.00, (0.024 { 1.03)f10;000g f�0:50g f0gE 10,200, (8396 { 10,890) -0.9, (-1.41 { -0.67) 1.75, (0.87{ 3.23)f10;000g f�1:00g f2gF 18,500, (10,500 { 19,290) -0.5, (-0.99 { -0.34) 0.75, (0.16 { 3.84)f10;000g f�1:25g f4g
3. Inferen
e of Atta
k Parameters Under Variable DosesIn this se
tion we 
ondu
t eight tests 
orresponding to more realisti
 
onditions. In the �rst four (Simulations I, Ia, II, andIIa) we relax the assumption of a 
onstant dose D; instead, the infe
ted people re
eive a range of doses 
ommensurate withatmospheri
 dispersion. However, the disease is still assumed to evolve per Wilkening's Model A2, with the same model providingC(T;D) to the inferen
e pro
edure. In the se
ond set of tests (Simulations III, IIIa, IV, and IVa), we retain distributed dosesand additionally relax the se
ond assumption: data are generated with Model D, while the inferen
e pro
edure still uses ModelA2 to evaluate the in
ubation period distribution. This mismat
h introdu
es a degree of realism into the inferen
e pro
ess sin
ethe host-pathogen intera
tion for humans and anthrax will seldom be 
hara
terized a

urately.In order to obtain a realisti
 distribution of doses in a geographi
ally distributed population, we �rst simulate an explosivepoint release of spores at a height of 100 meters with a Gaussian plume model, thus exposing di�erent numbers of people tovarying doses as des
ribed in Appendix A. We see from Fig. 13 that given a quantity of spores, the number of people infe
teddepends on the total population in the domain, the orientation of the plume, and the population distribution. A release doesnot lead to many infe
ted people if the high 
on
entration isopleths of the plume miss the lo
alized regions of high populationdensity.The series of symptomati
 times arising from su
h a simulated atta
k will re
e
t the evolution of inhalational anthrax in aninfe
ted population that re
eives a range of doses. These data will be \�t" using the model des
ribed in Se
. 2.1, whi
h assumesa uniform dose for all infe
ted individuals. The uniform dose thus inferred is, in a sense, a representative dose for the entireinfe
ted population; however, it is not rigorously linked to the median or mean of the a
tual distribution of doses. To avoid
onfusion, we therefore refer to the inferred (uniform) dose as the \representative" dose.Tables 3 and 4 list the time series obtained from all eight simulations. The time series have a resolution of 6 hours, withsu

essive 24-hour intervals indi
ated in the tables. As noted in Appendix A, these simulations 
orrespond to two 
hoi
es ofpopulation size (pexposed = 103 for Simulations Ia, II, IIIa and IV; pexposed = 104 for Simulations I, IIa, III and IVa) 
ombinedwith two 
hoi
es of plume orientation (� = 170Æ for Simulations I, Ia, III and IIIa; � = 125Æ for Simulations II, IIa, IV andIVa). The latter orientation dire
ts the plume over a more population-dense region. Tables 3 and 4 also report quantiles of theStatist. Med. 0000, 00 2{30 Copyright 

 0000 John Wiley & Sons, Ltd. www.sim.org 13Prepared using simauth.
ls



Statisti
sin Medi
ine J. Ray et al

Size of attack (N)

lo
g

1
0(

D
)

5000 10000 15000 20000 25000
0

1

2

3

4

5

1.32E-03
1.19E-03
1.05E-03
9.11E-04
7.74E-04
6.37E-04
5.00E-04
3.62E-04
2.25E-04
8.82E-05

Small, high-dose attack

Large, low-dose attack

Figure 5. The joint probability density p(N; log10(D)) obtained after 5 days of data for Simulation F. We 
learly see a dual 
hara
terization|a larger low-doseatta
k and a smaller high-dose atta
k.dose distribution D1; D25; D50; D75, and D99. That is, 1% of the population re
eives a dose of D1 spores or less, 75% of thepopulation re
eives less than D75 spores, and D99 is near the maximum dose. In Fig. 14 (Appendix A), we plot dose distributions
orresponding to the simulations listed in Tables 3 and 4. Note that while the doses may easily span two orders of magnitude,about 80% of the infe
ted people lie within a one-de
ade range of doses. The inferred representative dose D may re
e
t thisrange, and thus for limited veri�
ation purposes, we will 
ompare D to the a
tual median dose D50. Estimating a single D is,of 
ourse, a sour
e of model error, adding to the un
ertainty 
aused by in
omplete observations and the inherent sto
hasti
ityof the data. This model error is not expe
ted to diminish with additional data, and one of the aims of this investigation is toquantify it.3.1. Inferen
e of atta
k parameters without in
ubation model mismat
hWe begin with results from Simulations Ia, I, II, and IIa|i.e., eliminating the assumption that ea
h infe
ted person re
eives thesame dose of anthrax spores, but simulating and inferring disease progression with Wilkening's Model A2.Figs. 6, 7, 8, and 9 show posterior PDFs for fN; �; log10(D)g 
onditioned on the time series in Tables 3 and 4. Table 5 reportsthe MAP estimates and the 90% CIs for fN; �; log10(D)g after 5 days of data. Sin
e the true doses are distributed, we use thelog of the median dose, log10(D50), as a reasonable value for 
omparison to the posterior log10(D).First 
onsider Figs. 6 and 7, 
orresponding to Simulations Ia and I. These atta
ks have similar dose distributions but di�er byan order of magnitude in N. In both simulations, the MAP estimate of � nearly 
oin
ides with the true value after only 3 days14 www.sim.org Copyright 
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J. Ray et al Statisti
sin Medi
ineTable 3. Time series obtained from eight simulated outbreaks with variable doses. Simulations I, Ia, II, and IIa are simulatedusing Wilkening's Model A2, with the atta
k parameters|N, � , and the dose distribution|indi
ated at the bottom of the table.Simulations III, IIIa, IV and IV are simulated using Wilkening's Model D. �D is the average dose for the N infe
ted individuals. Thetable has been divided into 24-hour se
tions, where the values ni in ea
h se
tion 
an be summed to produ
e the low-resolutiontime series used to investigate the e�e
t of temporal resolution. The dose distribution is represented by its quantiles D1, D25,D50, D75, and D99; x% of the population re
eives a dose of Dx or less. Table 4 
ontinues the time series from Day 5 to Day 8.Time (days) Sim. Ia Sim. I Sim. II Sim. IIa Sim. IIIa Sim. III Sim. IV Sim. IVa0.0 1 3 2 5 1 1 1 30.25 2 3 2 8 1 8 5 140.50 0 6 1 8 0 20 6 360.75 4 12 5 27 1 16 13 811.00 1 14 7 46 3 9 12 771.25 2 26 12 57 2 18 14 941.50 2 28 9 85 2 28 13 1231.75 6 49 16 94 1 30 13 1322.0 6 57 9 133 2 37 17 1292.25 5 65 20 134 2 27 15 1592.50 7 68 12 139 4 41 17 1262.75 6 53 18 163 2 39 14 1493.0 11 80 15 138 3 34 9 1313.25 8 62 15 180 2 32 14 1293.50 9 89 21 140 3 25 16 1363.75 8 106 16 164 6 33 12 1004.00 17 70 20 180 4 27 14 1254.25 12 65 21 136 5 33 11 1044.50 9 87 8 147 3 33 6 1104.75 3 87 8 151 5 23 11 1065.0 6 76 7 127 6 23 15 90N 318 2989 454 4537 161 1453 453 4453� -1.5 -1.5 -1.5 -1.25 -0.75 -0.75 -0.75 -0.5�D 2912.8 2776.8 13,870.5 13,150.4 3603.5 3660.77 16,941 16,532D1 � 10�2 0:53 0:65 1:39 1:32 3:41 2:65 3:1 3:0D25 � 10�3 1:23 1:15 3:96 3:47 1:99 2:13 9:8 9:45D50 � 10�4 0:29 0:26 1:34 1:24 0:33 0:35 1:65 1:57D75 � 10�4 0:41 0:39 1:91 1:87 0:48 0:48 2:09 2:07D99 � 10�4 0:83 0:87 5:79 5:91 0:92 0:95 6:74 6:52of data. In Simulation Ia, the MAP estimate of N deviates from the true value by approximately 20%, but the 90% CIs bra
ketthe 
orre
t N quite easily. In Simulation I, the PDF for N initially favors an ina

urate 
hara
terization (a peak at N � 4000)but by Day 5, assumes a bimodal shape with a peak 
lose to the 
orre
t 
hara
terization. Dose is the most diÆ
ult parameterto estimate in Simulation Ia|the marginal PDF of log10(D) remains rather broad at all times. In the larger-N Simulation I,however, the posterior on log10(D) at least indi
ates that the atta
k is not a low dose (i.e., D50 � ID25) event. Also in SimulationI, 
onditioning on the high resolution time-series provides more stru
ture to the PDF; the posterior densities on log10(D) andeven on � are more prominently bimodal, indi
ating that inferen
e is in
on
lusive, and more observations will be required toobtain a unique 
hara
terization. For referen
e, both Figs. 6 and 7 in
lude a further set of PDFs 
onditioned on data throughDay 7; MAP estimates from these posteriors generally show even 
loser agreement with the true values of log10(D50) and N.Inferen
e is 
onsiderably less 
hallenging in Simulations II and IIa, 
orresponding to Figs. 8 and 9. Be
ause the doses arehigher (D50 > ID50), the varian
e of the in
ubation period distribution is smaller. The time of atta
k � is 
aptured with only 3days of data, as is a representative log10(D) for the large N atta
k (Simulation IIa). With 5 days of data, MAP estimates for Nare 
lose to the 
orre
t values in both simulations, as is the MAP estimate of log10D in Simulation II. Here, 
onditioning on thehigher-resolution time series yielded little gain over the lower-resolution time series. In Simulation II, MAP estimates of � basedStatist. Med. 0000, 00 2{30 Copyright 
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Statisti
sin Medi
ine J. Ray et alTable 4. Continuation of Table 3 beyond Day 5. Time series obtained from 4 simulated outbreaks with variable doses. SimulationsI, Ia, II, and IIa are simulated usingWilkening's Model A2, with the atta
k parameters|N, � , and the dose distribution|indi
atedat the bottom of the table. �D is the average dose for the N infe
ted individuals. The table has been divided into 24-hour se
tions,where the values ni in ea
h se
tion 
an be summed to produ
e the low-resolution time series used to investigate the e�e
t oftemporal resolution. The dose distribution is represented by its quantiles D1, D25, D50, D75, and D99; x% of the populationre
eives a dose of Dx or less.Time (days) Simulation Ia Simulation I Simulation II Simulation IIa5.25 9 70 16 1295.50 8 91 8 1095.75 10 79 9 1476.00 9 86 12 1266.25 8 82 13 1086.50 7 55 9 1146.75 7 69 7 907.0 6 75 8 967.25 8 61 6 887.50 4 67 6 777.75 6 65 8 758.00 2 62 6 69N 318 2989 454 4537� -1.5 -1.5 -1.5 -1.25�D 2912.8 2776.8 13,870.5 13,150.4D1 � 10�2 0:53 0:65 1:39 1:32D25 � 10�3 1:23 1:15 3:96 3:47D50 � 10�4 0:29 0:26 1:34 1:24D75 � 10�4 0:41 0:39 1:91 1:87D99 � 10�4 0:83 0:87 5:79 5:91on 6-hour data are in fa
t ina

urate on Days 3 and 4, re
overing the 
orre
t 
hara
terization after 5 days of data.In general, therefore, many of the behaviors dis
ussed in Se
. 2.3 are repeated in the present simulations. The representativedose D is diÆ
ult to estimate for small N atta
ks, while the time � is always easy to infer. We 
an bound the size N of theatta
k quite a

urately for all simulations. MAP estimates of N obtained from 5 days of data are always within 20% of the
orre
t value. Further, the 90% CIs at Day 5 for N, � , and log10(D) almost always bra
ket the true atta
k parameters. Finertemporal resolution �t may better 
apture the evolution of the outbreak, but has a relatively minor impa
t on summaries of theposterior; MAP estimates obtained from the low and high-resolution time series are similar, as are the 90% CIs. Thus, whilethe errors in
urred in �tting variable-dose data with a 
onstant-dose inferen
e model are not negligible, the 
urrent formulationprovides a reasonable and useful 
hara
terization of the BT atta
k.3.2. Inferen
e of variable dose atta
k with in
ubation model mismat
hWe now pro
eed to Simulations III, IIIa, IV, and IVa. As noted above, these simulations introdu
e a systemati
 di�eren
e betweenthe simulated evolution of the disease in infe
ted persons and the model used to interpret the observed data. We simulate BTatta
ks using Wilkening's Model D (i.e., sampling the in
ubation period distribution in Eq. 3), but infer the atta
k parametersusing Model A2. As in Se
. 3.1, the infe
ted population re
eives a distribution of doses (see Appendix A) but the model used inthe inferen
e pro
ess assumes a 
onstant dose.Figs. 10 and 11 show posterior PDFs for fN; �; log10(D)g 
onditioned on the time series in Table 3. As des
ribed in thepre
eding se
tion, �ner resolution in the time series does not have a great impa
t on the posterior, and hen
e we only plot PDFsresulting from daily observations in ea
h 
ase. Several features are worth highlighting. First, the dose is identi�ed mu
h more
losely in Simulations IV and IVa, where both N and log10(D) are higher, than in Simulations III and IIIa. Indeed, p(log10(D)) inthe low-dose small-N Simulation IIIa remains broad at all times. In Simulation III, after only 3 days of data, we observe a dual16 www.sim.org Copyright 
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Figure 6. Posterior PDFs for N (top), � (middle), and log10 D (bottom) based on the time series for Simulation Ia, as tabulated in Tables 3 and 4. Lower-resolution data (
olle
ted in 24-hour intervals) yield the PDFs on the left, while higher-resolution data yield the PDFs on the right. Corre
t values forfN; �; log10(D)g are f318;�1:5; 3:46g, where the \
orre
t" representative dose is taken to be log10(D50). In both simulations, PDFs are reported after 3-, 4-,5-, and 7-day observational periods.Statist. Med. 0000, 00 2{30 Copyright 
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Figure 7. Posterior PDFs for N (top), � (middle), and log10 D (bottom) based on the time series for Simulation I, as tabulated in Tables 3 and 4. Lower-resolutiondata (
olle
ted in 24-hour intervals) yield the PDFs on the left, while higher-resolution data yield the PDFs on the right. Corre
t values for fN; �; log10(D)gare f2989;�1:5; 3:41g, where the \
orre
t" representative dose is taken to be log10(D50). In both simulations, PDFs are reported after 3-, 4-, 5-, and 7-dayobservational periods.18 www.sim.org Copyright 
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Figure 8. Posterior PDFs for N (top), � (middle), and log10 D (bottom) based on the time series for Simulation II, as tabulated in Tables 3 and 4. Lower-resolutiondata (
olle
ted in 24-hour intervals) yield the PDFs on the left, while higher-resolution data yield the PDFs on the right. Corre
t values for fN; �; log10(D)gare f454;�1:5; 4:13g, where the \
orre
t" representative dose is taken to be log10(D50). In both simulations, PDFs are reported after 3-, 4-, 5-, and 7-dayobservational periods.Statist. Med. 0000, 00 2{30 Copyright 
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Figure 9. Posterior PDFs for N (top), � (middle), and log10 D (bottom) based on the time series for Simulation IIa, as tabulated in Tables 3 and 4. Lower-resolution data (
olle
ted in 24-hour intervals) yield the PDFs on the left, while higher-resolution data yield the PDFs on the right. Corre
t values forfN; �; log10(D)g are f4537;�1:25; 4:09g, where the \
orre
t" representative dose is taken to be log10(D50). In both simulations, PDFs are reported after 3-,4-, 5-, and 7-day observational periods.20 www.sim.org Copyright 
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J. Ray et al Statisti
sin Medi
ineSimulation N � log10(D)Ia (6-hr resolution) 400, (233.6 { 581.9) -1.5, (-2.00 { -0.795) 3.0, (0.37 { 3.99)Ia (24-hr resolution) 400, (230.4 { 582.2) -1.5, (-2.04 { -0.78) 2.75, (0.32 { 4.00)f318g f�1:5g f3:46gI (6-hr resolution) 4100, (2334 { 4439) -1.4, (-1.57 { -0.64) 4.00, (0.715 { 4.147)I (24-hr resolution) 4000, (2281 { 4358) -1.4, (-1.59 { -0.70) 4.00, (0.91 { 4.173)f2989g f�1:5g f3:41gII (6-hr resolution) 400, (305.5 { 981.6) -1.5, (-1.98 { -1.08) 4.25, (0.68 { 4.72)II (24-hr resolution) 400, (327.0 { 984.7) -1.6, (-2.10 { -1.03) 4.25, (0.36 { 4.69)f454g f�1:5g f4:13gIIa (6-hr resolution) 3900, (3686 { 4340) -1.3, (-1.48 { -1.14) 4.25, (4.05 { 4.72)IIa (24-hr resolution) 4000, (3709 { 4433) -1.5, (-1.55 { -1.18) 4.25, (4.04 { 4.72)f4537g f�1:25g f4:09gTable 5. Simulations I, Ia, II, IIa; MAP estimates and 90% 
redibility intervals (in parentheses) for N, � , and log10(D) 
onditionedon data through Day 5. Corre
t values for N and � are in f g. The inferred representative dose is 
ompared with log10(D50),also in f g.

hara
terization of the outbreak: N � 700 and, to a larger extent, N � 2000. However, p(N) be
omes unimodal as additionaldata be
ome available. In fa
t, PDFs for all three parameters in all four simulations are unimodal by Day 5. The resulting MAPestimates and 90% CIs for fN; �; log10(D)g are reported in Table 6. In 
ontrast to Se
. 3.1, MAP estimates for N and � arenot within 20% of the true values. With the ex
eption of Simulation IIIa, N is smaller than it should be, and in all simulations� is more negative than it should be.A qualitative explanation for these dis
repan
ies is advan
ed as follows. Sin
e Model A2 predi
ts shorter in
ubation periodsthan Model D (re
all Fig.1), the epidemi
 
urve as simulated with Model D will rise more slowly that predi
ted by ModelA2. When these data are interpreted using Model A2, it is reasonable to expe
t the posterior to 
ompensate for the slowerrise by underestimating N, i.e., by suggesting a smaller outbreak. Simultaneous estimation of D and � raises a few additional
ompli
ations, however. Re
all that the posterior of D is 
entered quite 
lose to its true value in Simulations IV and IVa, andto a lesser extent in Simulation III. But in the likelihood fun
tion, this dose enters the wrong model. Using a \
orre
t" dose inModel A2 is akin to using a mu
h larger dose in Model D; both situations yield shorter in
ubation periods. Now draw a parallelwith Simulation F in Se
. 2.3. There, we found that a large-dose small-N atta
k and a small-dose large-N atta
k gave rise tovery similar patient data during the �rst �ve days of an outbreak. Moreover, we found that N and � were positively 
orrelated(and that both were negatively 
orrelated with D): the small-N mode of the posterior also favored more negative � , i.e., atta
ksthat o

urred approximately one day earlier. The very same 
orrelations a�e
t inferen
e in the present simulations. In
ubationmodel mismat
h is roughly equivalent to an overestimation of D, whi
h is 
ompensated for by underestimating N and � .In summary, Table 6 shows that MAP estimates for N are typi
ally within a fa
tor of two below the true result and that � isestimated roughly a day too early.Statist. Med. 0000, 00 2{30 Copyright 
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Figure 10. Posterior PDFs for N (top), � (middle), and log10 D (bottom) based on daily time series for Simulation IIIa (left) and Simulation III (right). Corre
tvalues for fN; �; log10(D)g are f161;�0:75; 3:52g (Simulation IIIa) and f1453;�0:75; 3:54g (Simulation III), where the \
orre
t" representative dose is takento be log10(D50). In both simulations, PDFs are reported after 3-, 4-, and 5-day observational periods (dotted, dashed and solid lines respe
tively).22 www.sim.org Copyright 
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Figure 11. Posterior PDFs for N (top), � (middle), and log10 D (bottom) based on daily time series for Simulation IV (left) and Simulation IVa (right). Corre
tvalues for fN; �; log10(D)g are f453;�0:75; 4:22g (Simulation IV) and f4453;�0:5; 4:20g (Simulation IVa), where the \
orre
t" representative dose is takento be log10(D50). In both simulations, PDFs are reported after 3-, 4-, and 5-day observational periods (dotted, dashed and solid lines respe
tively).Statist. Med. 0000, 00 2{30 Copyright 
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Statisti
sin Medi
ine J. Ray et alSimulation N � log10(D)IIIa (6-hr resolution) 170, (130.1 { 243.6) -1.5, (-2.3 { -0.86) 2.0, (0.23 { 3.74)IIIa (24-hr resolution 170, (125.1 { 238.8) -1.5, (-2.4 { -0.94) 2.5, (0.255 { 3.78)f161g f�0:75g f3:52gIII (6-hr resolution) 780, (722 { 945.5) -1.7, (-2.03 { -1.42) 4.25, (4.02 { 4.723)III (24-hr resolution 760, (701 { 891.7) -1.6, (-1.91 { -1.31) 4.25, (4.04 { 4.724)f1453g f�0:75g f3:54gIV (6-hr resolution) 330, (297.2 { 668.6) -1.7, (-2.23 { -1.40) 4.5, (1.4 { 4.72)IV (24-hr resolution) 330, (296.3 { 705.3) -1.7, (-2.26 { -1.38) 4.5, (1.45 { 4.72)f453g f�0:75g f4:22gIVa (6-hr resolution) 2900, (2728 { 3056) -1.5, (-1.90 { -1.1) 4.5, (4.275 { 4.725)IVa (24-hr resolution) 2900, (2741 { 3064) -1.5, (-1.97 { -1.26) 4.5, (4.275 { 4.725)f4453g f�0:5g f4:20gTable 6. Simulations III, IIIa, IV, and IVa: MAP estimates and the 90% 
redibility intervals (in parentheses) for N, � , andlog10(D) 
onditioned on data through Day 5. Corre
t values for N and � are in f g. The \
orre
t" representative dose is takento be log10(D50), also in f g.4. The Sverdlovsk Anthrax Outbreak of 1979We now address the estimation of some of the parameters of the Sverdlovsk anthrax outbreak. It is suspe
ted that on 2 April1979, a high-grade anthrax formulation was a

identally released from a military fa
ility in Sverdlovsk (today, Yekaterinburg),Russia. The resulting outbreak lasted 42 days, and patient data were 
olle
ted on a daily basis [7℄. Chara
terizing the Sverdlovsk
ase presents signi�
ant 
hallenges. It 
orresponds to a low-dose \atta
k" infe
ting fewer than 100 people. Wilkening [17℄estimates that the average dose was either around 2{3 spores, based on his Model A, or around 300 spores based on his ModelD; Meselson [7℄ estimates 100{2000 spores as the likely dose. The �rst patient presented symptoms on 4 April 1979. Around12 April, tetra
y
line was administered around Sverdlovsk; around 15 April, people were va

inated. Prophyla
ti
 measures mayhave prevented the onset of symptoms in some people and in
reased the in
ubation period in others. Further, the availabledata almost 
ertainly 
ontain some re
ording errors. Errors in the data, the e�e
t of prophylaxis (whi
h is not modeled in ourlikelihood fun
tion), and the small size of the infe
ted population are expe
ted to stress our inferen
e pro
edure.In Fig. 12 we plot the posterior densities of N and � based on the data in [7℄. Model A2 is used for inferen
e. After 9 daysof data, the time of release was easy to infer: the MAP estimate of � is �2 (i.e., 2 April 1979) and the 90% CI for � is[�3:22;�1:38℄. PDFs for the dose (omitted here) were indeterminate; the 90% CI for log10(D) spans [0:18; 3:5℄, and moreoverthe average dose at Sverdlovsk is unknown. The MAP estimate for N 
enters around 50, though the earlier PDFs underestimateN. The 90% CI for N after 9 days of data is [41:15; 66:49℄. Thus by 13 April (i.e., Day 9, the start of the prophylaxis 
ampaignand 2 days before the va

ination 
ampaign), the PDF of N strongly suggests that the outbreak will a�e
t fewer than 200people. In 
omparison, 70 people are believed to have died [7, 8℄ and 80 are believed to have been infe
ted [8℄, though the truenumber is unknown. However, approximately 59,000 people in the Chkalovskiy raion were impa
ted by the medi
al interventions;80% were va

inated at least on
e [7℄.Guillemin [32℄ do
uments the publi
 health response undertaken by the Soviet authorities on
e the Sverdlovsk epidemi
 wasdete
ted, illustrating the diÆ
ulties and pitfalls fa
ed by medi
al responders when the origin and the extent of an epidemi
 are24 www.sim.org Copyright 
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J. Ray et al Statisti
sin Medi
ineunknown. Indeed, Soviet authorities held that the epidemi
 was 
aused by infe
ted meat and spent 
onsiderable e�ort sear
hingfor it. The response also engaged many medi
al personnel and oÆ
ials from outside Sverdlovsk. Yet by Day 4 (8 April 1979)it was 
lear that the epidemi
 was small (Fig. 12, left) and 
ould be handled by lo
al authorities. (Sverdlovsk was a military-industrial 
ity with a population of 1.2 million [7℄.) Guillemin [32℄ also des
ribes e�orts to de
ontaminate buildings and treesby hosing them down with disinfe
tants; yet with knowledge of � (Fig. 12, right) and meteorologi
al 
onditions, the bounds ofthe a�e
ted region 
ould have been established (as Meselson did in 1994 [7℄) and the publi
 health response suitably targeted.A quantitative model and an inferential 
apability 
ould therefore have been of assistan
e in 1979. These lessons are equallyappli
able to 
ontemporary bioterror s
enarios.
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Figure 12. PDFs of N (left) and � (right) for the Sverdlovsk outbreak.
5. Con
lusionsWe have developed a Bayesian approa
h to infer some important 
hara
teri
s of BT atta
ks from a time series of diagnosedpatients. Our tests with anthrax show that an observation period of 3{5 days, 
ounted from the day of �rst symptoms, maybe suÆ
ient to estimate the number of asymptomati
 infe
ted people, the time of infe
tion, and a representative dose, andto provide quanti�ed un
ertainty intervals around these estimates. Note that sin
e the data 
onsist of the times of symptomsof diagnosed patients, the inferen
e 
an be performed only after the �rst patient is su

essfully diagnosed. Sensitivity studiessuggest that when the disease model is not a

urate, we may arrive within a fa
tor of two of the size of the atta
k. The resolutionof the time series of diagnosed patients has a small impa
t if the disease model is a

urate; otherwise, model errors dominate.This Bayesian approa
h may be extended and improved in many ways. One extension is to in
lude hospital visit delay timesin the analysis. While we have used the time at whi
h ea
h patient be
ame symptomati
 to demonstrate our method, existingmedi
al informati
s systems typi
ally re
ord the time of 
lini
al en
ounter instead. The di�eren
e between the two|the hospitalvisit delay|
an be modeled in a Bayesian manner (see [33℄ for a model of the hospital visit delay for inhalational anthrax) andin
luded in the analysis. This would 
apture the e�e
t of the patients who have turned symptomati
, but have not yet reportedto the hospitals, on the inferred quantities. However, it would introdu
e an additional sour
e of variability and require furthersensitivity analysis. Improved medi
al informati
s systems that 
apture the time of symptoms would make our methodology moreuseful, eliminating the variability introdu
ed by hospital visit delays. A se
ond sour
e of delay | the time required to performtests, et
., that lead to a 
on�rmed diagnosis | 
an be another sour
e of un
ertainty, but 
ould be modeled in a manner similarto the hospital visit delay and in
luded in the inferen
e pro
edure. Another potential short
oming of our approa
h is our inabilityto infer a distribution of doses (
ommensurate with a spatially distributed population and atmospheri
 dispersion); instead weStatist. Med. 0000, 00 2{30 Copyright 
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Statisti
sin Medi
ine J. Ray et alrely on inferring a representative dose. However, the impa
t of this \short
oming" on the a

ura
y of the inferen
e is un
lear;the tests performed by Legrand et al. [5℄ between their spatiotemporal inferen
e te
hnique (whi
h, of 
ourse, in
luded a fullyspatially distributed dosage pattern) and an older, single-representative-dose version of our 
urrent approa
h [25℄ revealed nomajor di�eren
es in the quality of the inferen
e. However, unlike [5℄, our purely temporal approa
h 
annot infer 
ertain, mostlyspatial, 
hara
teristi
s of an aerosolized BT atta
k, e.g., the lo
ation and height of a release.The ability to \fuse" disparate sour
es of data via prior distributions 
ontributes signi�
antly to the robustness of Bayesianinferen
e in data-starved environments. Informative prior distributions for N and � , drawn from syndromi
 surveillan
e data, mayin
rease the eÆ
ien
y of the inferen
e pro
ess. Also, the present approa
h 
an immediately be applied to other non
ontagiousdiseases, as well as to 
ontagious diseases with long in
ubation periods, su
h as smallpox, where se
ondary 
ases do not appearin the early time series of patient data.The importan
e of quantitatively 
hara
terizing a BT atta
k was expli
itly identi�ed in the \Dark Winter" exer
ise [3℄.\Dark Winter" was a war-game/table-top exer
ise 
ondu
ted in 2001 to assess the ability of key de
ision makers, e.g., thePresident of the United States, et
., to respond to a smallpox BT atta
k. Parti
ipants in
luded, among others, The Hon. SamNunn, the former senator, The Hon. R. James Woolsey, the former Dire
tor of the Central Intelligen
e Agen
y and General J.Titelli (U.S.A, retd). The \lessons learned" se
tion of [3℄ lists the information gaps that the parti
ipants fa
ed when formulatingthe response to the ensuing epidemi
. (Estimates of the size of the problem at hand are often 
ru
ial in 
hoosing between
ompeting response strategies, and this exer
ise was no ex
eption.) Parti
ipants sought the ability \. . . to immediately predi
tthe likely size of the epidemi
 on the basis of the initial 
ases; to know how many people were exposed." Thus the primaryutility of our inferen
e pro
edure is in the 
ontext of a response plan, espe
ially when resour
es have to be husbanded and used
arefully (e.g., if more atta
ks are feared). Preliminary results on how an inferen
e algorithm 
an be used within the 
ontext ofresour
e allo
ation during single and multiple BT atta
ks 
an be found in [23, 24℄. Sin
e our inferen
e methodology is purelytemporal, data requirements are simple, thus redu
ing the opportunities for introdu
ing signi�
ant measurement errors. Forexample, a spatiotemporal approa
h would require the geographi
al lo
ation of ea
h patient at the instant of infe
tion; in amobile population, lo
ations 
an be a signi�
ant sour
e of error sin
e a detailed movement s
hedule of the infe
ted patients israrely available. In the absen
e of su
h data, the lo
ation may be modeled probabilisti
ally, and results from preliminary workby the BARD group 
an be found in [34, 35℄. The same te
hnique was also used by Legrand et al. [5℄ in their investigationinto the spatiotemporal inferen
e of BT atta
ks. A dis
ussion of the ambiguities and diÆ
ulties introdu
ed by lo
ation data,within the 
ontext of the Sverdlovsk outbreak, 
an be found in [32, 36℄. Certainly a spatiotemporal approa
h, 
orre
tly applied,has the potential to un
over more information (e.g., spatial information, whi
h 
an be 
riti
al for prioritizing prophylaxis [5℄,de
ontamination, et
.) from a partially observed epidemi
, but the simpler temporal approa
h 
onsidered here may 
onstitute amore robust and pra
ti
al tool for early response and resour
e allo
ation.
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urs over a domain with a non-uniform population distribution; we 
an 
ombinethe plume model with the population distribution to 
al
ulate the number of people exposed to a given dose. In this se
tion, wedes
ribe a simple way to obtain su
h a population-dosage distribution.We 
onsider a square domain, L km on ea
h side; in this study, L = 10 km. The domain is divided into N blo
ks per side;here N = 100. 25 population 
lusters are 
hosen in the form of Gaussian kernels A exp(�r 2=R2), where r 2 = jx� x0j2. Thestrength of the kernel A, its 
enter x0, and its length s
ale R are randomly sampled from independent uniform distributions. Thepopulation density in any blo
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aled to obtain a total population (in the domain) of Pdomain. The population in a given blo
k is obtained by multiplying thepopulation density with the blo
k area. This 
reates a geographi
ally distributed population.The number of people exposed (i.e., who inhaled the aerosol, but may or may not develop symptoms) and infe
ted (i.e., whowill develop symptoms) is dependent on the lo
ation and size of the release and dire
tion of the wind. We release 1013 spores atthe origin, at a height of 100 meters. A wind speed of 4 m/s and a Pasquill stability 
lass of \B" are assumed. Pasquill stability
lasses indi
ate atmospheri
 stability; 
lass B indi
ates a moderately unstable atmosphere with strong daytime insolation. Detailsof Pasquill stability 
lasses and atmospheri
 dispersion are in [22℄. In our study, wind dire
tions are measured in degrees fromdue north; that is, a wind dire
tion of zero degrees is a wind from due north, 90 degrees is a wind from the west, and a dire
tionof 180 degrees is a wind from due south. The release is assumed to be an explosive point release, and the 
on
entration of theaerosol at any point (x; y) on the ground and any time t is given by [22℄�(x; y ; t) = 2QT(2�)3=2�x 0�y 0�z 0 exp„� (x 0 � ut)22�2x 0 « exp � (y 0)22�2y 0 ! exp„� (H0)22�2z 0 « (8)28 www.sim.org Copyright 
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Figure 13. Dosage plumes plotted over the population distribution for � = 170Æ (left) and 125Æ (right). We see on the right that the extremities of the plumeextend into a high population density region. Population density is measured in number of people per square kilometer. Thus we may expe
t a substantialnumber of high-dosage 
ases, resulting in a higher average dosage D.where (x 0; y 0) are Cartesian 
oordinates in a frame of referen
e where the x 0-axis is aligned with the wind. �x 0 ; �y 0 and �z 0 are
oeÆ
ients dependent on x 0 and on the Pasquill stability 
lass. H is the height of release and � is the 
on
entration of theaerosol in spores per unit volume. u is the wind velo
ity. QT is the total number of spores released. The relation between x0 andx is given by
 xy ! =  
os(� � �) � sin(� � �)sin(� � �) 
os(� � �) ! x 0y 0 !where � is the wind dire
tion. Assuming a minute ventilation � of 30 liters a minute [5, 7℄, one 
an obtain an expression forthe number of spores inhaled per unit time. Integrating to in�nite time, one obtains the total number of spores D inhaled by aperson positioned at (x; y) (or at (x 0; y 0)):D = QT�2��x 0�y 0�z 0 exp � (y 0)22�2y 0 ! exp„� (H0)22�2z 0 «`1 + erf(x 0)´ :The dosage assigned to a given blo
k is de
ided by the lo
ation of its 
enter. If we 
hoose Model A2 to simulate the BT atta
k,we use Glassman's formula to model the probability a of showing symptoms (in in�nite time) given a dosage D [18℄:a(D) = 12 »1 + erf „ ln(D=D0)Sp2 «– (9)where D0 = 8600 spores and S = 3:44. These 
orrespond to a human ID50 of 8600 spores and a probit slope of 0.67 [17, 18℄.If Model D is 
hosen instead, we employ Eq. 5 to determine the probability of infe
tion given a dose D. Sin
e the population ina blo
k is known, we 
an then use the probability of infe
tion to 
al
ulate the number of people in the blo
k who will pro
eedto develop symptoms over time, per the in
ubation period model.In this study, we use Pdomain = 3� 106 and two plume dire
tions, � = 170Æ and 125Æ. The two releases result in, respe
tively,686,068 and 1,869,741 exposed individuals, i.e., individuals who have re
eived a dose of one spore or more. The maximum dosesobserved in the two 
ases are 30,877 and 314,053 respe
tively. The dose range is divided into 100 equal bins and a histogram ofthe number of people in ea
h bin is developed for ea
h of the 
ases. The histogram is then normalized to obtain the \exposure"Statist. Med. 0000, 00 2{30 Copyright 
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Statisti
sin Medi
ine J. Ray et alTable 7. The wind dire
tion, �, and the size of the exposed population, pexposed, used to generate the infe
ted population invarious atta
ks. For Cases I, Ia, II, and IIa, Eq. 9 is used for the probability of infe
tion, while for Cases III, IIIa, IV, and IVa,Eq. 5 is used.pexposed = 103 pexposed = 104� = 170Æ Case Ia, Case IIIa Case I, Case III� = 125Æ Case II, Case IV Case IIa, Case IVaPDF, i.e, the PDF of the dose re
eived by an individual in the exposed population. Given the large population (Pdomain = 3� 106),the PDF developed from a histogram with 100 bins is quite smooth. Note that only a fra
tion of the exposed population willdevelop symptoms, with an individual's probability of being infe
ted (and subsequently developing symptoms) being given byGlassman's relation (Eq. 9) or Eq. 5.The \exposure" PDFs developed for � = 170Æ and 125Æ are then used to sample from a smaller exposed population of pexposedfor ea
h of the tests. Values of pexposed and � used for the di�erent 
ases are in Table 7. Ea
h exposed individual is then allowedto be
ome infe
ted with a dose-dependent probability. The resulting infe
ted sub-population yields the �nal dose distribution.Dose distributions resulting from this pro
ess, for all the 
ases (viz. Cases Ia, I, II, IIa, IIIa, III, IVa and IV) are depi
ted inFig. 14. We plot the inverse CDF of doses|i.e., the abs
issa is the fra
tion of the infe
ted population whi
h re
eives a doseless than or equal to the ordinate. In ea
h inset, we also plot a histogram of the dose distribution. Note that while the dosesmay easily span two orders of magnitude, about 80% of the infe
ted people lie within a one-de
ade range.

30 www.sim.org Copyright 
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Figure 14. The inverse 
umulative distribution of doses for Cases Ia, I, II, and IIa (left 
olumn) and Cases IIIa, III, IV, IVa (right 
olumn). The abs
issa is thefra
tion of the infe
ted population whi
h re
eives a dose less than or equal to the ordinate. Inset: we plot histograms 
ontaining the number of infe
ted peoplein ea
h dose bin. While the histograms have long tails, the bulk of the population re
eives doses spanning one order of magnitude..
Statist. Med. 0000, 00 2{30 Copyright 

 0000 John Wiley & Sons, Ltd. www.sim.org 31Prepared using simauth.
ls


